3.1081 \(\int \frac{(1+x)^{3/2}}{(1-x)^{3/2}} \, dx\)

Optimal. Leaf size=41 \[ \frac{2 (x+1)^{3/2}}{\sqrt{1-x}}+3 \sqrt{1-x} \sqrt{x+1}-3 \sin ^{-1}(x) \]

[Out]

3*Sqrt[1 - x]*Sqrt[1 + x] + (2*(1 + x)^(3/2))/Sqrt[1 - x] - 3*ArcSin[x]

________________________________________________________________________________________

Rubi [A]  time = 0.0065135, antiderivative size = 41, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.235, Rules used = {47, 50, 41, 216} \[ \frac{2 (x+1)^{3/2}}{\sqrt{1-x}}+3 \sqrt{1-x} \sqrt{x+1}-3 \sin ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[(1 + x)^(3/2)/(1 - x)^(3/2),x]

[Out]

3*Sqrt[1 - x]*Sqrt[1 + x] + (2*(1 + x)^(3/2))/Sqrt[1 - x] - 3*ArcSin[x]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(1+x)^{3/2}}{(1-x)^{3/2}} \, dx &=\frac{2 (1+x)^{3/2}}{\sqrt{1-x}}-3 \int \frac{\sqrt{1+x}}{\sqrt{1-x}} \, dx\\ &=3 \sqrt{1-x} \sqrt{1+x}+\frac{2 (1+x)^{3/2}}{\sqrt{1-x}}-3 \int \frac{1}{\sqrt{1-x} \sqrt{1+x}} \, dx\\ &=3 \sqrt{1-x} \sqrt{1+x}+\frac{2 (1+x)^{3/2}}{\sqrt{1-x}}-3 \int \frac{1}{\sqrt{1-x^2}} \, dx\\ &=3 \sqrt{1-x} \sqrt{1+x}+\frac{2 (1+x)^{3/2}}{\sqrt{1-x}}-3 \sin ^{-1}(x)\\ \end{align*}

Mathematica [C]  time = 0.0064706, size = 35, normalized size = 0.85 \[ \frac{4 \sqrt{2} \, _2F_1\left (-\frac{3}{2},-\frac{1}{2};\frac{1}{2};\frac{1-x}{2}\right )}{\sqrt{1-x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + x)^(3/2)/(1 - x)^(3/2),x]

[Out]

(4*Sqrt[2]*Hypergeometric2F1[-3/2, -1/2, 1/2, (1 - x)/2])/Sqrt[1 - x]

________________________________________________________________________________________

Maple [B]  time = 0.014, size = 72, normalized size = 1.8 \begin{align*} -{({x}^{2}-4\,x-5)\sqrt{ \left ( 1+x \right ) \left ( 1-x \right ) }{\frac{1}{\sqrt{- \left ( 1+x \right ) \left ( -1+x \right ) }}}{\frac{1}{\sqrt{1-x}}}{\frac{1}{\sqrt{1+x}}}}-3\,{\frac{\sqrt{ \left ( 1+x \right ) \left ( 1-x \right ) }\arcsin \left ( x \right ) }{\sqrt{1-x}\sqrt{1+x}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x)^(3/2)/(1-x)^(3/2),x)

[Out]

-(x^2-4*x-5)/(-(1+x)*(-1+x))^(1/2)*((1+x)*(1-x))^(1/2)/(1-x)^(1/2)/(1+x)^(1/2)-3*((1+x)*(1-x))^(1/2)/(1+x)^(1/
2)/(1-x)^(1/2)*arcsin(x)

________________________________________________________________________________________

Maxima [A]  time = 1.52968, size = 57, normalized size = 1.39 \begin{align*} -\frac{{\left (-x^{2} + 1\right )}^{\frac{3}{2}}}{x^{2} - 2 \, x + 1} - \frac{6 \, \sqrt{-x^{2} + 1}}{x - 1} - 3 \, \arcsin \left (x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(1-x)^(3/2),x, algorithm="maxima")

[Out]

-(-x^2 + 1)^(3/2)/(x^2 - 2*x + 1) - 6*sqrt(-x^2 + 1)/(x - 1) - 3*arcsin(x)

________________________________________________________________________________________

Fricas [A]  time = 1.47791, size = 144, normalized size = 3.51 \begin{align*} \frac{\sqrt{x + 1}{\left (x - 5\right )} \sqrt{-x + 1} + 6 \,{\left (x - 1\right )} \arctan \left (\frac{\sqrt{x + 1} \sqrt{-x + 1} - 1}{x}\right ) + 5 \, x - 5}{x - 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(1-x)^(3/2),x, algorithm="fricas")

[Out]

(sqrt(x + 1)*(x - 5)*sqrt(-x + 1) + 6*(x - 1)*arctan((sqrt(x + 1)*sqrt(-x + 1) - 1)/x) + 5*x - 5)/(x - 1)

________________________________________________________________________________________

Sympy [A]  time = 3.27815, size = 100, normalized size = 2.44 \begin{align*} \begin{cases} 6 i \operatorname{acosh}{\left (\frac{\sqrt{2} \sqrt{x + 1}}{2} \right )} + \frac{i \left (x + 1\right )^{\frac{3}{2}}}{\sqrt{x - 1}} - \frac{6 i \sqrt{x + 1}}{\sqrt{x - 1}} & \text{for}\: \frac{\left |{x + 1}\right |}{2} > 1 \\- 6 \operatorname{asin}{\left (\frac{\sqrt{2} \sqrt{x + 1}}{2} \right )} - \frac{\left (x + 1\right )^{\frac{3}{2}}}{\sqrt{1 - x}} + \frac{6 \sqrt{x + 1}}{\sqrt{1 - x}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)**(3/2)/(1-x)**(3/2),x)

[Out]

Piecewise((6*I*acosh(sqrt(2)*sqrt(x + 1)/2) + I*(x + 1)**(3/2)/sqrt(x - 1) - 6*I*sqrt(x + 1)/sqrt(x - 1), Abs(
x + 1)/2 > 1), (-6*asin(sqrt(2)*sqrt(x + 1)/2) - (x + 1)**(3/2)/sqrt(1 - x) + 6*sqrt(x + 1)/sqrt(1 - x), True)
)

________________________________________________________________________________________

Giac [A]  time = 1.08252, size = 47, normalized size = 1.15 \begin{align*} \frac{\sqrt{x + 1}{\left (x - 5\right )} \sqrt{-x + 1}}{x - 1} - 6 \, \arcsin \left (\frac{1}{2} \, \sqrt{2} \sqrt{x + 1}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x)^(3/2)/(1-x)^(3/2),x, algorithm="giac")

[Out]

sqrt(x + 1)*(x - 5)*sqrt(-x + 1)/(x - 1) - 6*arcsin(1/2*sqrt(2)*sqrt(x + 1))